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EXECUTIVE SUMMARY 

PURPOSE 

The CPUC’s recent 11,500 megawatts (MW) net qualifying capacity (NQC) procurement order requires 

standardized ELCC values so that LSEs know the compliance value of various incremental resource types 

and the CPUC can be confident that incremental procurement will fill their identified procurement need. 

This report presents the effective load carry capability (ELCC) values to be used for compliance with the 

CPUC’s Mid-Term Reliability (MTR) Decision (D.) 21-06-035. The decision’s Ordering Paragraph (OP) 15 

requires CPUC staff to publish the values by no later than August 31, 2021. The values for 2025 (“Tranche 

3”) and 2026 (“Tranche 4”) compliance dates may be updated and published by no later than December 

31, 2022. E3 and Astrapé produced this report as technical consultants to the CPUC using Astrapé’s 

Strategic Energy and Risk Valuation Model (SERVM) stochastic loss of load probability (LOLP) model. 

BACKGROUND 

Many renewable energy resource types, such as wind and solar resources, are non-dispatchable and 

variable in output, dependent upon external conditions such as weather. Resources such as battery 

storage have limits on their ability to be dispatched, with their constraints being either total energy or 

time of day limitations. Consequently, the ability of these resources to serve load is not the same as a 

traditional, dispatchable resource. Therefore, a measure of their equivalent capacity is needed so that 

these resources can be properly accounted in resource adequacy assessment. The emerging industry 

standard for this purpose is Effective Load Carrying Capability (ELCC). 

This study examined the incremental ELCC of energy storage, solar PV, and wind in the CAISO to provide 

ELCC assumptions to load-serving entities (LSEs) for compliance with the CPUC’s Mid-Term Reliability 

(MTR) Decision.1 The Decision requires that at least 11,500 MW of additional NQC be procured by all the 

LSEs subject to Commission jurisdiction. The capacity requirements are divided into four “tranches”: 2,000 

MW by 2023, 6,000 additional MW by 2023, 1,500 additional MW by 2025, and 2,000 additional MW by 

2026. ELCCs for each tranche were calculated and key observations were made concerning the 

interactions between those resources as well as between those resources and other conventional2 

resources as it relates to their ability to improve CAISO system reliability. All ELCCs shown in this report 

are annual ELCC values.3 

 
1 D.21-06-035, available at: https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M389/K603/389603637.PDF   
2 The term “conventional” in this report refers to resources that can be turned on and off to reflect market 
conditions and do not have energy/duration constraints, such as gas power plants. 
3 Per the FAQ document released by CPUC staff on August 24, 2021, “for resource types for which staff publish 
ELCCs for by the end of August 2021, per OP 15, the ELCC is annual and should be used to determine compliance 
with OP 1 and OP 3. For other resource types, LSEs should use the September NQC according to RA program  
rules at the time of contract signing.” The FAQ document is available at: https://www.cpuc.ca.gov/industries-and-
topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-
authorizing-procurement/irp-procurement-track  

https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M389/K603/389603637.PDF
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/more-information-on-authorizing-procurement/irp-procurement-track


8 
 

METHODOLOGY 

ELCCs are calculated by determining the reliability improvement contributed to the system by incremental 

resources in terms of the amount of additional load that can be served because of that improvement in 

reliability.4 Thus, ELCC provides a consistent metric through which renewable and energy limited 

resources can be directly compared based on their ability to fill the CAISO’s mid-term capacity shortfall.  

This study began with a “baseline” CAISO resource portfolio aligned with the baseline from which the 11.5 

gigawatt (GW) capacity procurement need was measured. Recognizing that solar and energy storage 

resources significantly interact with each other and are likely to form the bulk of resource additions, E3 

and Astrapé designed a “surface” of incremental solar and storage additions. Wind resources were studied 

at four points in this surface, aligned with the four MTR procurement tranches. In addition, a heuristic is 

provided for paired or hybrid resources based on the ability to effectively charge the storage capacity in 

the mid-term timeframe.5 This analysis began with the CPUC Energy Resource Modeling (ERM) team’s 

latest SERVM version, with its existing load and resources data, and made a variety of updates including 

wind shapes, unspecified import shapes, forced outage rates, and operating reserve needs. For this 

analysis, the ELCC of incremental resource additions was determined by comparing the reliability 

improvement achieved with the equivalent reliability of a perfect capacity generator (represented by a 

combustion turbine (CT) with no forced or planned outages).  

RESULTS 

The ELCCs by MTR Tranche are presented in Table ES1. 

Incremental ELCCs by MTR Tranche. Energy storage resources 

provide less than 100% incremental ELCC in tranche 1 due to 

the existing CAISO storage penetration (approximately 6 GW of 

batteries and pumped storage hydro) and interactions with the 

conventional fleet used for charging. Energy storage ELCCs 

decline with increasing penetration, which can be partially 

offset with longer duration storage additions. Solar ELCCs 

decline as the net peak is shifted later into the evening but then 

increase due to their diversity benefit with higher penetrations of energy storage on the system; by 2026, 

most of their incremental capacity value is from these interactive effects with other resources. In-state 

wind ELCCs increase as solar and storage additions move reliability need into more favorable time periods 

for in-state wind’s typical output. Out-of-state wind and offshore wind show higher ELCCs than in-state 

wind due to their higher output during net peak conditions. For storage technologies other than batteries 

and pumped storage hydro the results here are also applicable for those, within reason.   

 
4 In the academic literature the comparison is performed against flat blocks of load. However, in practice in the 
industry, the comparison is often made to generation modeled without forced or planned outages.   
5 This report refers to “Paired” resources as generation and storage resources that share the same grid 
interconnection and “Hybrid” resources as paired resources with constraints that require storage charging to occur 
using the paired generation resource rather than the grid. 

“Marginal” vs. “Incremental” ELCCs: 

marginal ELCCs refer to the ELCC benefit 

of adding one additional MW to a 

system (or another reasonably small 

amount). Incremental ELCCs refer to the 

ELCC benefit of a larger incremental 

addition or the subsequent benefits of 

multiple increments of additions. 
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Table ES1. Incremental ELCCs by MTR Tranche 

  Tranche 1 Tranche 2 Tranche 3 Tranche 4 
 2,000 MW 6,000 MW 1,500 MW 2,000 MW 

  2023  2024  2025  2026  

4-Hour Battery 96.3% 90.7% 74.2% 69.0% 

6-Hour Battery* 98.0% 93.4% 79.6% 75.1% 

8-Hour Battery* 98.2% 94.3% 82.2% 78.2% 

8-Hour Pumped Storage Hydro N/A N/A N/A 76.8% 

12-Hour Pumped Storage Hydro N/A N/A N/A 80.8% 

Solar - Utility Scale and BTM PV 7.8% 6.6% 6.7% 5.7% 

Wind CA 13.9% 16.5% 22.6% 21.6% 

Wind WY 28.9% 28.1% 26.7% 31.6% 

Wind NM 31.1% 31.0% 34.5% 34.2% 

Wind Offshore N/A N/A N/A 36.4% 
*     The 6 and 8 hour battery rows were each simulated with one tranche of 6 or 8 hour. The underlying tranches are 

assumed to be comprised of only 4-hour batteries. For example, tranche 3 for the 6 hour battery row is comprised 

of 8 GW of incremental effective capacity from 4-hour batteries with an additional 1.5 GW of 6-hour battery 

capacity. 

 

A heuristic is recommended for paired resource ELCCs. This heuristic, presented in Table ES2, captures a 

calculation method for all paired resource ELCCs as well as the necessary system sizing required to ensure 

full charging of the storage for hybrid resources (i.e., those that are limited from charging from the grid 

and must charge from the paired generation resource) with 4-hr duration storage. The necessary 

generator system sizing ensures that hybrid resources can sufficiently charge to discharge fully during the 

summer evening net peak loss of load events modeled in the mid-term time horizon. For longer-duration 

hybrids, E3 and Astrapé recommend that minimum generation thresholds scale linearly with increasing 

storage duration. For example, a 5-hour solar hybrid would require 5/4 or 125% minimum generator MW 

as a percentage of 5-hr storage MW. 

Table ES2. Paired Resource ELCC Heuristic 

 ELCC Calculation Method* 
Min. Generator MW 

(as % of 4-hr storage MW)** 

Solar and Storage 
solar ELCC x solar MW + 

storage ELCC x storage MW 
100% 

Wind and Storage 
wind ELCC x wind MW + 

storage ELCC x storage MW 
200% 

* Subject to a cap based on interconnection sizing 

** Applicable to hybrid resources only 
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BACKGROUND AND METHODOLOGY 

MTR PROCESS AND NEED FOR INCREMENTAL ELCCS 

The MTR Decision requires that at least 11,500 megawatts (MW) of additional net qualifying capacity 

(NQC) be procured by all the load-serving entities (LSEs) subject to Commission jurisdiction. The capacity 

requirements are divided into four “tranches”: 2,000 MW by 2023, 6,000 additional MW by 2023, 1,500 

additional MW by 2025, and 2,000 additional MW by 2026. The very large amount of capacity ordered 

(approximately 25% of the system managed peak demand) requires a robust method for ensuring that 

incremental reliability contributions used by LSEs in their evaluations and compliance filings will be 

sufficient to completely fill the procurement need identified.   

Unlike traditional resources, the system reliability contributions of renewable and energy limited 

resources decline with greater penetrations of such resources. This is because they do not have the same 

dispatch flexibility that traditional resources have to meet changing system dynamics and are subject to 

“saturation effects”. For example, as solar is added to the system, the injections into the system from the 

solar resources cause a shift in the timing of the net load peak as demonstrated in Figure 1. Incremental 

solar produces less energy during the new net load peak period and has a corresponding lower reliability 

contribution. 

Figure 1. Illustrative Net Load Shift Due to Solar Penetration 

 

The figure depicts the net load assuming no solar (i.e., gross load less other modifiers such as wind, energy 

efficiency, etc.), and then net loads at various penetrations of solar. The figure clearly depicts a time shift 

in the net peak load of the system. As the new net load peak approaches dusk, the contribution that the 

next increment of solar has to meeting that new peak is smaller than that of previous increment. The 
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result is that over time, as solar is added to the system, the average ELCC – the total reliability value of all 

the solar resources – decreases. These dynamics are often referred to as “saturation effects”.  

In addition to dynamics within a resource type (e.g. solar), there are ELCC dynamics between resource 

types, which are known as “diversity impacts”. This concept is illustrated in Figure 2 below, which shows 

that solar and energy storage added together provide more than the sum of their parts. Energy storage 

shifts the peak back to the solar hours and solar can charge energy storage as well as narrow the residual 

net peak storage must serve.  

Figure 2. Schematic of “Diversity Impacts” between Solar and Energy Storage6 

 
 

The average ELCC of the portfolio does not accurately reflect the true reliability benefit of the next 

increment of a resource added to the system due to the saturation effects described above. Therefore, 

for all renewable and energy limited resources, the only way to truly capture the reliability benefit of 

these incremental resources is to calculate the incremental ELCC of adding new resources, which will be 

different than the average ELCC of the entire portfolio. Loss of load probability (LOLP) modeling is used 

for ELCC calculations because it accurately captures reliability contributions across a broad range (years 

or decades) of system conditions and because it robustly captures interactive effects between incremental 

resources and the existing system fleet. This study used Astrapé’s stochastic LOLP reliability model SERVM 

for these ELCC calculations.  

 

SERVM ELCC CALCULATION METHODOLOGY 

ELCCs are calculated using SERVM by determining how much additional load can be served by the 

renewable/energy limited resources while maintaining a targeted reliability benchmark, expressed in 

terms of Loss of Load Expectation (LOLE). The resource adequacy framework of SERVM ensures that the 

reliability impact of the renewable/energy limited resources are evaluated across a broad range of 

weather patterns via historical weather years, economic growth scenarios, and outage conditions. 

 
6 N. Schlag, Z. Ming, A. Olson, L. Alagappan, B. Carron, K. Steinberger, and H. Jiang, "Capacity and Reliability Planning 
in the Era of Decarbonization: Practical Application of Effective Load Carrying Capability in Resource Adequacy," 
Energy and Environmental Economics, Inc., Aug. 2020 
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SERVM models renewable resources as an 8,760-hour per year injection profile into the system. A 

separate injection profile is modeled for each weather year considered. Battery resources are modeled 

like Pumped Storage Hydro (PSH) facilities, with an initial generation schedule determined day-ahead 

based on daily load shape diversity, but which can be altered under emergency conditions. Battery 

resources, however, are able to dispatch more flexibly and serve ancillary services at a wider range of 

dispatch levels. These resources are modeled along with all other dispatchable resources using an 8,760-

hour chronological, economic dispatch modeling approach.  

To determine the reliability benefit of a portfolio of renewable/energy limited resources, the study system 

is first calibrated to a presumed target level of reliability with perfect CTs.  For this study, the system was 

calibrated to the CPUC IRP’s adopted reliability standard LOLE of 0.1 days/year. The study tranche being 

considered (e.g., the first tranche of modeled storage additions) is then added to the system to determine 

the improvement in LOLE. The system is then returned to the target 0.1 days/year LOLE by removing a 

portion of the previously added perfect CTs. The difference in LOLE between the base case condition and 

the study tranche condition is the reliability benefit provided by the test portfolio. This process is 

illustrated in Figure 3 below. 

 

Figure 3. ELCC Calculation Process Visual 

 
The amount of perfect CTs removed to achieve 0.1 days/year LOLE will be less than the nameplate capacity 

of the study tranche and represents the equivalent capacity value of the study tranche. Dividing the 

equivalent capacity value by the nameplate capacity of the tranche results in the incremental ELCC 

(expressed in percent). 
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When assessing load carrying capability, either the addition of perfect load (i.e. flat load) or the removal 

of perfect capacity (i.e., a dispatchable generator with no forced or planned outages) can be used. There 

is no industry standard approach and both methods have been used widely in the industry, however the 

method used may capture different interactive effects on energy-limited resources (such as energy 

storage). Prior ELCC studies performed by Astrapé for California have used perfect blocks of load to 

compare the reliability contributions of incremental generation.7 That method leaves existing generation 

with forced outages in the fleet and tends to exacerbate negative interactions across resource classes.  

For instance, adding energy storage may already require existing conventional generation to operate 

more mid-day to charge the storage and the additional load that needs to be served in all hours in the 

“perfect load” method requires existing generation to operate even more. This increased operation leads 

to more outages and commensurately lower ELCCs for storage and wind resources.  The perfect capacity 

method was chosen for this analysis because it aligns with the method used by the CPUC Energy Resources 

Modeling team in their ELCC calculations. Using the perfect capacity method requires removing 

conventional generation from the baseline system, reducing the effect of system interactions, which tends 

to produce higher ELCCs for storage and wind resources. Since the difference in methods produces 

differences in ELCCs of only a few percentage points and baseload growth is not expected to be of the 

same magnitude as the capacity additions being analyzed, the perfect capacity method is reasonable for 

this analysis. 

 

IMPORTANCE OF USING AN LOLP-BASED APPROACH TO CALCULATE CAPACITY VALUE 

Initial approaches used in the industry to determine the reliability contribution of non-dispatchable 

resources were based on estimating the output of the resource during peak gross or peak net load 

conditions. The simplest methods, including those first used by California, entail averaging output (or 

using a statistical “exceedance” method) during afternoon hours when load was likely to peak. More 

sophisticated methods entail subtracting the net load from the gross load as shown in Figure 4. The 

resulting value was used to qualify capacity. 

 

 
7 https://www.astrape.com/?ddownload=9255   

https://www.astrape.com/?ddownload=9137  

 

https://www.astrape.com/?ddownload=9255
https://www.astrape.com/?ddownload=9137
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Figure 4. Reliability Contribution of Solar Using Gross and Net Load Delta 

 
While these methods have an intuitive foundation, they suffer from multiple flaws. First, setting the 

window of reliability concern - which hours and days are critical – is subjective and is unlikely to align with 

the periods which determine 0.1 LOLE compliance. Second, the output from energy-limited resources 

during critical periods cannot be accurately determined without a commitment and dispatch model since 

their operating schedules are determined by resource prioritization and other rules that may not match 

simple peak shaving strategies.  Finally, these methods do not capture interactions across resource types 

within the system. California has since moved away from historical output-based methods to a more 

robust ELCC calculation methodology approach8 and all other large RA programs in the US have adopted, 

are in the process of adopting, or are considering the use of ELCC methods.9  

Variable and energy-limited resources have interactions amongst themselves, but also interact with the 

conventional generation fleet.  For example, Figure 5 illustrates interactions between batteries, wind, and 

solar resources with conventional resources. Based on modeled dispatch, battery output is zero or 

negative in hours prior to the peak and then positive when discharging during higher price net load peak 

hours. Wind output in California is typically lower in the hours prior to peak than its output during net 

load peak conditions. Solar output is generally higher in the hours prior to the peak than during net load 

peak conditions. Resources with higher output prior to the net load peak provide a positive diversity 

 
8 ELCCs incorporating system operational dynamics across multiple years of load and renewable output data are 
used for supply-side solar and wind capacity accreditation calculations. However, behind the meter solar resources 
are still accredited within the IEPR forecast using a more simplified view based on single 8760 hourly shapes for 
load and solar generation.  
9 MISO currently uses ELCCs for wind. SPP and PJM are currently transitioning to ELCCs for solar, wind, and storage. 
ISO-NE and NYISO are both exploring the ELCC method. 
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benefit to conventional resources by reducing their operations and therefore limiting the likelihood of 

them facing a forced outage during the net load peak. Resources with lower output prior to the net load 

peak have a negative diversity impact since they require additional output from conventional resources, 

which then face a higher likelihood of a forced outage. This latter category includes energy storage 

resources if they require increased output from conventional resources to charge (storage projects that 

charge from paired generation would not be subject to this effect). These diversity impacts are considered 

within the LOLP modeling framework and result in battery and wind resources having ELCCs that are 

generally lower than their output during net peak conditions while solar resources have higher ELCCs than 

their output during peak conditions. 

Figure 5. Effect of Storage, Wind, and Solar Resources on Conventional Operation 

 
 

For these reasons, it is critical that ELCCs be determined through rigorous study of the reliability of the 

system using an LOLP model such as SERVM. LOLP models require simulating hundreds of thousands of 

scenarios to surface reliability problems and model the contributions of each class of resource across a 

broad range of weather conditions. In addition to performing quality control on the inputs required to 

build these scenarios, in depth review of hourly simulation outputs at the generator level is performed 

during initial calibration. Resulting ELCCs are validated through various means including net load 

validation analysis and verifying directional impacts of system changes.  
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STUDY DESIGN 

This study utilized the following key steps:  

1. Complete any SERVM methodology or input updates to the latest CPUC model version 

2. Update the CAISO portfolio to reflect the MTR baseline portfolio 

3. Design a “surface” of incremental solar and storage additions to represent expected mid-term 

capacity additions 

4. Model the individual and combined additions of solar and storage capacity 

5. Allocate diversity impacts between solar and storage using the “delta method”  

6. Interpolate storage ELCCs for the resource additions needed to fill the remaining need in each 

MTR tranche after accounting for the ELCC of modeled solar additions 

7. Model incremental ELCCs for 6-hr, 8-hr, and 12-hr storage assuming 4-hour storage is built to fill 

the previous tranches10 

8. Model wind ELCCs within each tranche of solar and storage additions 

9. Develop a heuristic for paired generation and storage resource ELCCs 

The key SERVM input and methodology changes are described in the “Input Assumptions” section of this 

report below, which included wind shapes, unspecified import shapes, forced outage rates, and operating 

reserve needs. CAISO portfolio updates to the baseline 2022 portfolio provided by CPUC staff included the 

following changes: 

• Add forecasted incremental utility-scale solar and energy storage additions within the MTR 

baseline (i.e., forecasted additions through 2026 based on in-development contracts executed 

and approved by June 30, 2020) 

• Remove remaining OTC gas units 

• Remove Diablo Canyon units 

• Update load forecast inputs to the 2023 loads in the 2020 IEPR (including consumption, BTM PV, 

AAEE, TOU, and EV loads) 

Loads were held constant at the 2023 level. Load changes between 2023-2026 are expected to have 

minimal impact on ELCCs and changing loads between study tranches would have introduced another 

variable to disentangle from the aggregated impact of increasing solar and storage penetration. The final 

CAISO portfolio onto which incremental resources were added is described in Table 3 below. 

The solar and surface ELCC design, illustrated in Figure 6, assumed incremental utility-scale solar based 

on 2020 38 MMT LSE IRP planned + review resources (those above the MTR baseline that already included 

all online and in-development resources) while incremental BTM PV additions were based on the 2020 

 
10 For example, 6-hr battery ELCC in tranche 3 is calculated assuming 8 GW of incremental effective capacity from 
4-hour batteries is added to fill tranches 1 and 2, with an additional 1.5 GW of 6-hour battery capacity modelled 
for tranche 3. 
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IEPR forecast.11 Storage additions were designed to capture a range of additions that would enable 

interpolating to determine the nameplate storage additions needed to fill each tranche with energy 

storage ELCC MW. The solar and storage capacities in each tranche are described further in tables in the 

“Solar and Storage Surface Inputs” section below. 

Figure 6. Solar and Surface ELCC Design 

 

Once the solar and storage surface was designed, in-state wind was modeled as incremental to the 

assumed solar and storage starting points for each tranche. In other words, the tranche 2 in-state wind 

ELCCs were modeled as the incremental ELCC on top of a portfolio of resources that included the MTR 

baseline resources plus the tranche 1 solar and storage additions. This captured the interactive effects 

between the solar and storage additions on wind incremental ELCCs. 

When solar and storage are added together, they provide diversity benefits that make a portfolio of solar 

and storage resources contribute more to reliability than the sum of their individual ELCCs. These diversity 

benefits were allocated between solar and storage with the delta method, using the portfolio ELCC and 

the estimated first-in and last-in marginal ELCCs for solar and storage within each MTR tranche on the 

 
11 The MTR baseline is aligned with the resources modelled to calculate the mid-term capacity shortfall; see the 
“Need Determination Model” available at: https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-
division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/need-determination-
model-2-22-2021-stackanalysismodel_02022021.xlsx. The aggregated LSE planned resources are contained in the 
CPUC’s “Aggregated LSE Plan and Baseline and Dev Resources” spreadsheet, available at: 
ftp://ftp.cpuc.ca.gov/energy/modeling/Aggregated%20LSE%20Plans%20and%20Baseline%20and%20Dev%20Reso
urces.xlsx. 

https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/need-determination-model-2-22-2021-stackanalysismodel_02022021.xlsx
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/need-determination-model-2-22-2021-stackanalysismodel_02022021.xlsx
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/need-determination-model-2-22-2021-stackanalysismodel_02022021.xlsx
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surface. E3 developed the delta method, illustrated in Figure 7, to credit each resource in a portfolio of 

resources in a manner that reflects the nature of their synergistic, antagonistic, or neutral interactions 

with the portfolio by adjusting last-in ELCC based on its difference from its first-in ELCC. The method 

allocates interactive effects while balancing the goals of reliability, fairness, efficiency, and acceptability. 

It is intended to be scalable across a portfolio of multiple resource types but can be used as well on a 

portfolio with two resource types (as modeled here for solar and storage). 

Figure 7. Delta Method ELCC Allocation Methodology12 

 

The ELCC results are referred to as “incremental” ELCC. Marginal ELCCs refer to the ELCC benefit of adding 

one additional MW to a system (or another reasonably small amount). Incremental ELCCs refer to the 

ELCC benefit of a larger incremental addition or the subsequent benefits of multiple increments of 

additions. Because larger levels of additions are considered in this study, including multiple increments of 

solar and storage, the ELCC results are referred to as “incremental” ELCCs. 

Key areas of uncertainty contained within the study design utilized include modeled vs. actual 

performance of energy storage resources in the CAISO market, the assumed solar capacity additions (both 

BTM and utility-scale), and the impact of climate change on SERVM’s CAISO load shapes and resource 

availability. 

 
12 For additional background information on E3’s Delta Method see the following: N. Schlag, Z. Ming, A. Olson, L. 
Alagappan, B. Carron, K. Steinberger, and H. Jiang, "Capacity and Reliability Planning in the Era of Decarbonization: 
Practical Application of Effective Load Carrying Capability in Resource Adequacy," Energy and Environmental 
Economics, Inc., Aug. 2020. 
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INPUT ASSUMPTIONS 

RELIANCE ON ESTABLISHED CPUC IRP SERVM MODEL DATA 

The base database was constructed using the base database created by the Energy Division in support of 

the Resource Adequacy (RA) and Integrated Resource Plan (IRP) proceedings.13 

UPDATES MADE IN THE PROCESS OF THIS STUDY 

IMPORT SHAPES 

In the model, available on-peak imports (hours 18 to 22) are constrained from 11,665 MW in the off-peak 

periods to 5,000 MW. In the original dataset, the change in constraint is applied simply as a one-hour shift. 

This jump is unwieldy for the SERVM commitment algorithms. Instead of applying the instant shift, these 

simulations used a linear sloping import profile. Publicly available interchange information for CAISO was 

retrieved from the EIA website based on January 2020 to February 2021 actual data.14 While historical 

imports often showed more than 5GW, total imports were capped as shown in Figure 8 to match the 

expected future transmission and generation availability constraints of 5 GW between hours 18 and 22. 

The historical data also showed an average of 1,000 MW/h ramping capability, leading to the use of the 

linear sloping import limit rather than the block shape that abruptly drops and increases 6,665 MW in one 

hour. Recent analyses have assumed a further reduced level of imports (e.g., only 4,000 MW unspecified 

imports in the MTR “High Need” scenario) which would directly affect system capacity need. However, 

this difference is not expected to have a significant impact on the ELCC results. 

Figure 8. Modeled Maximum Import Limit 

 

 
13 https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-
procurement-planning/2019-20-irp-events-and-materials/unified-ra-and-irp-modeling-datasets-2019  
14 https://www.eia.gov/beta/electricity/gridmonitor/dashboard/electric_overview/balancing_authority/CISO  

https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/2019-20-irp-events-and-materials/unified-ra-and-irp-modeling-datasets-2019
https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-power-procurement/long-term-procurement-planning/2019-20-irp-events-and-materials/unified-ra-and-irp-modeling-datasets-2019
https://www.eia.gov/beta/electricity/gridmonitor/dashboard/electric_overview/balancing_authority/CISO
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All external regions were not explicitly modeled, instead North and South neighbor assistance was 

modeled as a proxy. Table 1 defines which Tier 1 (one tie away) neighboring entities were classified as 

North and which neighbors were classified as South.  

Table 1. Region Definitions for Proxy Neighbor Assistance 

Region Tier 1 Entity 

North 

Balancing Authority of Northern California (BANC) 
Bonneville Power Administration (BPA) 

PacifiCorp West (PACW) 
Turlock Irrigation District (TIDC) 

South 

Arizona Public Service Company (AZ APS) 
Comisión Federal de Electricidad (CFE) 

Imperial Irrigation District (IID) 
Los Angeles Department of Water and Power (LADWP) 

Nevada Power Company (NEVP) 
Salt River Project (SRP) 

Western Area Power Administration – Lower Colorado Region (WALC) 

A time series of imports into CAISO was developed for North and South Tier 1 neighboring entities 

separately and was based on historic interchange as a function of CAISO net load by season, where net 

load is calculated as load minus the sum of wind, utility scale solar, and behind the meter solar. The 

relationship between net load and net imports was applied to all 20 weather years studied (1998 to 2017) 

so that each weather year included a unique profile of assistance from neighboring areas reflective of 

each year’s renewable output and weather conditions.15  While historical imports often showed more 

than 5 GW during peak net load hours, total imports were capped as shown in Figure 8 to match the 

expected future transmission and generation availability constraints of 5 GW between hours 18 and 22.  

The average hourly imports as a function of net load during hours 18 to 22 are provided in Figure 9.  In 

most net load conditions, the 5 GW import capability is fully utilized.  

 
15 Net imports are exports minus imports. The study simulations do not capture periods of net export, but as a 
resource adequacy study, those periods are not relevant for ELCC calculations. 
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Figure 9. Average Hourly Imports by Zone 

 

Figure 10 provides an illustrative example of a week of imports for both the North and South zones.  

Figure 10. Imports – 1 Week Illustrative Example 
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WIND SHAPES 

Astrapé created new wind shapes for land-based in-state wind resources for use in this study. The reason 

for creating the new wind shapes was driven by the timing of the previous wind not aligning with historical 

data and the large and unexpected differences in ELCCs by zone within California implied by the original 

shapes.16 Astrapé constructed synthetic shapes for 1998 to 2017 using a clustered sampling method based 

on historical wind output data provided by CPUC staff. CPUC staff developed profiles for offshore wind 

and out-of-state wind resources in New Mexico and Wyoming based on the Modern-Era Retrospective 

analysis for Research and Applications, Version 2 (MERRA-2) dataset.17 The documentation for the wind 

shapes can be found in Appendix A. Prior out-of-state wind ELCCs were calculated using profiles developed 

by Astrapé based on historical production data. Given the limited available production data for wind 

projects outside California, the incremental ELCC values for out-of-state wind projects in this updated 

study were based on simulations using the CPUC-developed wind profiles. 

OPERATING RESERVES 

Operating reserves were increased from 4.5% to 6% in SERVM for this study to be consistent with the 

Western Electricity Coordinating Council (WECC) contingency requirement.18 

FORCED OUTAGE RATES 

Forced outage rates for combined cycles (CCs) and combustion turbines (CTs) were updated to better 

reflect the actual class average outage rates. A comparison of the original and updated weighted average 

equivalent forced outage rates (EFORs) is shown in Table 2. 

Table 2. Original and Updated Modeled Weighted Average EFORs for CCs and CTs 

Unit Category 

Original 

Weighted Average 

EFOR  

(%) 

Updated 

Weighted Average 

EFOR  

(%) 

Combined Cycle 9.3 7.2 

Combustion Turbine 20.1 15.2 

 

It was important to update these unit categories because of the significant interaction that non-

dispatchable resources have with other conventional dispatchable resources that have forced outage 

rates, as shown in the “Importance of Using LOLP-Based Approach to Calculate ELCC” section above.  The 

new lower forced outage rates reduce the effect from the interaction particularly for wind and storage 

resources, resulting in an increase in ELCCs in this study compared to Astrapé’s 2021 study for the 

California IOUs, which used the previous forced outage rates. 

 
16 This references the wind profiles used in the CPUC RA modeling efforts available at: 
ftp://ftp.cpuc.ca.gov/energy/modeling/wind_servm_profiles_merra.csv 
17 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
18 http://www.caiso.com/Documents/Final-Root-Cause-Analysis-Mid-August-2020-Extreme-Heat-Wave.pdf  

ftp://ftp.cpuc.ca.gov/energy/modeling/wind_servm_profiles_merra.csv
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
http://www.caiso.com/Documents/Final-Root-Cause-Analysis-Mid-August-2020-Extreme-Heat-Wave.pdf
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SUMMARY OF KEY INPUTS 

MTR BASELINE PORTFOLIO 

The Baseline Portfolio used in SERVM is provided in Table 3.  

Table 3. 2023 Base Resource Mix 

Unit Category Capacity (MW) 

AAEE 821 

Battery Storage 3,854 

Biogas 292 

Biomass / Wood 527 

BTM PV 15,543 

CC 16,081 

Coal 480 

Cogen 2,294 

CT 8,307 

DR 1,817 

EV -1,616 

Geothermal 1,469 

Hydro 6,619 

ICE 255 

Imports 10,502 

Nuclear 635 

PSH 2,273 

Solar 1Axis 3,307 

Solar 2Axis 2 

Solar Fixed 10,844 

Solar Thermal 997 

TOU -2,857 

Wind 7,114 

Total 89,560 

 

SOLAR AND STORAGE SURFACE INPUTS 

The nameplate solar additions added by each tranche are provided in Table 4. The utility solar additions 

were assumed to be all solar single-axis tracking. The solar and surface ELCC design assumed incremental 

utility-scale solar additions in 2023, 2024, 2025, and 2026 based on the average annual additions of 1,658 

MW between 2022 and 2026 in the 2020 38 MMT LSE IRPs planned + review resources dataset. This led 

to 3,317 MW of utility-scale solar being added to the MTR baseline portfolio for 2022 and 2023 LSE-

planned additions and 1,658 MW being added in 2024, 2025, and 2026. This resulted in a slightly more 

conservative approach than the actual annual LSE planned additions, which were more front-loaded with 

nearly 7 GW of new additions by 2024. This conservative approach is warranted to avoid overestimating 
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the ELCC provided by near-term solar additions (and the diversity benefit those would provide to storage 

additions) should LSEs not secure the very high level of near-term build contained in the LSE plans. 

Incremental BTM PV additions for 2024, 2025, and 2026 were taken from the 2020 IEPR forecast. 

Table 4. Nameplate Solar Additions by Tranche 

Tranche 

BTM PV 

Additions  

(MW) 

Utility Solar  

Additions  

(MW) 

Incremental 

Solar Added by 

Tranche (MW) 

Tranche 1 

202319 
0 3,317 3,317 

Tranche 2 

2024 
1,265 1,658 2,923 

Tranche 3 

2025 
1,266 1,658 2,884 

Tranche 4 

2026 
1,153 1,658 2,811 

 

The incremental storage added by tranche and simulated storage levels by tranche are provided in Table 

5. Recognizing that the ELCC contributions of incremental storage additions are less than 100%, the 

incremental simulated storage did not match the targeted procurement. The required storage capacity to 

meet procurement targets for tranche 4 was ultimately extrapolated from the results of these runs. The 

portfolio ELCCs for the levels simulated were curve fitted to a second order polynomial which was then 

used to forecast the required 4-hour storage resources needed to meet the procurement targets. 

Table 5. Assumed Nameplate Storage Capacity by Tranche 

Tranche 
Incremental 

Procurement Target 
(NQC MW) 

Incremental Storage Levels 
Simulated by Tranche 

(MW) 

Total System 
Battery Storage 

(MW) 

Tranche 1 
2023 

2,000 2,000 5,854 

Tranche 2 
2024 

6,000 6,000 11,854 

Tranche 3 
2025 

1,500 2,000 13,854 

Tranche 4 
2026 

2,000 2,000 15,854 

 

 

 
19 The first tranche of solar captures the ELCC for additional solar additions above the MTR baseline that may be 
added anytime between now and 2023. 
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RESULTS 
 

The incremental ELCCs by MTR Tranche are presented in Table 6. For storage technologies other than 

batteries and pumped storage hydro the results here are also applicable for those, within reason.  

Table 6. Incremental ELCCs by MTR Tranche 

  Tranche 1 Tranche 2 Tranche 3 Tranche 4 

 2,000 MW 6,000 MW 1,500 MW 2,000 MW 
 

2023 2024 2025 2026 

4-Hour Battery 96.3% 90.7% 74.2% 69.0% 

6-Hour Battery* 98.0% 93.4% 79.6% 75.1% 

8-Hour Battery* 98.2% 94.3% 82.2% 78.2% 

8-Hour Pumped Storage Hydro  N/A N/A N/A 76.8% 

12-Hour Pumped Storage Hydro  N/A N/A N/A 80.8% 

Solar - Utility Scale and BTM PV 7.8% 6.6% 6.7% 5.7% 

Wind CA 13.9% 16.5% 22.6% 21.6% 

Wind WY 28.9% 28.1% 26.7% 31.6% 

Wind NM 31.1% 31.0% 34.5% 34.2% 

Wind Offshore N/A N/A N/A 36.4% 
*  The 6 and 8 hour battery rows were each simulated with one tranche of 6 or 8 hour. The underlying tranches are 

assumed to be comprised of only 4-hour batteries. For example, tranche 3 for the 6 hour battery row is comprised 

of 8 GW of incremental effective capacity from 4-hour batteries with an additional 1.5 GW of 6-hour battery 

capacity.  

 

Appendix B presents a comparison of these incremental ELCCs for storage, solar, and wind resources to 

those from past studies, including Astrapé’s 2021 Marginal ELCC study for the IOUs and the latest ELCCs 

from the Preferred System Plan version of RESOLVE. 

SOLAR ELCC 

As the penetration of solar increases, the net load peak shifts out towards the evening hours. However, 

there is a limit to this shift.  In the extreme, the output of solar can be de minimis in the net load peak 

hour as demonstrated in Figure 11 below, which shows an extreme case of over 50GW of solar capacity. 

In a representative day where solar output is 1% of nameplate in the net load peak hour, 100 GW of solar 

would only reduce the net load peak by 1 GW. Figure 11 shows solar output at the timing of the net load 

peak as a function of solar penetration. In this figure, the “Base+3GW” values correspond to the solar 

included in Tranche 4. SERVM captures the net peak shift from solar across twenty years of historical load 

and solar modeled, whereby the extent of the net peak shift will differ from year to year based on the 

peak load patterns and solar output changes, driven by weather differences across those years. 
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Figure 11. Average Solar Output Across Top 25 Net Load Daily Peaks 

 

The solar ELCCs shown in Table 6 are materially higher than the values shown in Figure 11 due to the 

influence that solar has on the reliability contributions of other classes of resources. The interactions 

between solar and other resource classes will be explored in the ‘Solar and Storage Interactions’ section. 

While solar’s output during net load peak is affected by both its longitude and technology attributes (such 

as tracking utility PV vs. BTM PV), interactive effects in the system mute some of these differences. This 

study did not calculate distinct ELCCs by solar category or by location. Astrapé’s 2021 ELCC study for the 

CA IOUs did conduct ELCC analysis by solar type and location, which can provide an indication of which 

solar resources provide more or less than the resource average modeled here.  

STORAGE ELCC 

Storage ELCCs are predominately determined by their ability to serve load during extreme conditions 

without exhausting their store of energy. We will refer to this attribute as energy sufficiency. However, as 

described above, storage ELCCs are also affected by their interactions with other resource classes, 

including the charging energy served by conventional generators. This interaction results in a decline in 

battery ELCC prior to the level of storage penetration in which the energy sufficiency of the battery 

declines. The storage requirements of a battery are related to its ability to “shave the peak” of the system 

demand. For example, consider Figure 12 below, which illustrates hypothetical duration requirements of 

2.5 GW, 7.5 GW, and 10 GW of battery storage. 
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Figure 12. Battery Storage Duration Requirement (illustrative) 

 
The illustrative figure indicates that the first 2.5 GW of batteries on the system only need to have a storage 

duration of 2 hours.  At 7.5 GW of capacity, the incremental battery resources would need 4 hours of 

storage, while at 10 GW of capacity, the incremental battery resources would need 6 hours of storage. (In 

the figure the blue areas represent load not served by batteries.)  

Because of the previously discussed interactions between resource classes, the ELCC of the batteries may 

not fully achieve 100% even if their duration is sufficient to serve the required portion of the net load.  

Because of the increased utilization of the conventional resources associated with serving additional load 

in other hours, there is probability that one of these resources could experience a previously unexpected 

outage that impacts the ability of the battery to meet the system peak.  Figure 13 shows a comparison of 

adding a perfect generation resource with adding a battery resource to the system. Because the battery 

can only operate for a limited period, generation that was supplied by a perfect generator in the 

comparison case must come from existing conventional generators which have forced outage rates. So 

even if batteries have a very low forced outage rate, their contribution to reliability more closely mimics 

the reliability contribution of a generator with system average outage characteristics. This is the reason 

for the ELCC of less than 100% in the first tranche. Even though the battery has sufficient energy, system 

interactions reduce its contribution to reliability. A conventional resource with system average EFOR 

would be expected to show a similar ELCC since the comparison is against a perfect resource.  As solar 
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penetration increases, excess mid-day energy is able to serve as charging energy for incremental batteries 

on the system, which reduces the interactive effects described here. 

Figure 13. Incremental Battery Additions Compared to Incremental Perfect Generation 

 

SOLAR AND STORAGE INTERACTIONS 

While ELCCs for both solar and storage resources follow declining marginal curves as penetration 

increases, the resource classes exhibit synergistic effects. Increasing solar penetration steepens the net 

load shape, allowing for more storage capacity to provide reliability value. To isolate this synergy and 

determine appropriate allocations for each technology, simulations were performed for both standalone 

solar, standalone storage, and combined solar and storage. The difference in the sum of the standalone 

values and the portfolio value is the diversity benefit, which was then split between the technologies, 

using the delta method. For solar, as shown in Figure 14, the standalone ELCC approaches 0% as the total 

penetration by 2026 exceeds 40 GW. There is very little solar output at the time of the net load peak at 

this solar penetration. However, as demonstrated by the post-diversity calculations, the steepening effect 

on the net load results in a net reliability contribution that is meaningfully higher. Importantly, the 

diversity benefit is only material when the battery fleet is not energy sufficient. In cases where the battery 

energy is exhausted, the additional energy from solar can delay the start of battery discharge.  
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Figure 14. Solar ELCC Comparison 

 

The diversity impact contribution to storage ELCCs is of similar magnitude, as shown in Figure 15, though 

the storage ELCCs are at a higher starting point so the effect appears less pronounced.  

Figure 15. Battery Storage ELCC Comparison 
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PAIRED GENERATION AND STORAGE 

A heuristic is recommended for paired resource ELCCs. This heuristic, presented in Table 7, captures a 

calculation method for all paired resource ELCCs as well as the necessary system sizing required to ensure 

full charging of the storage for hybrid resources that are limited from charging from the grid and must 

charge from the paired generation resource. The necessary generator system sizing ensures that hybrid 

resources can sufficiently charge to discharge fully during the summer evening net peak loss of load events 

modeled in the mid-term time horizon.  

Table 7. Paired Resource ELCC Heuristic 

 ELCC Calculation Method* 
Min. Generator MW 
(as % of 4-hr storage 

MW)** 

Solar and Storage 
solar ELCC x solar MW + 

storage ELCC x storage MW 
100% 

Wind and Storage 
wind ELCC x wind MW + 

storage ELCC x storage MW 
200% 

* Subject to a cap based on interconnection sizing 

** Applicable to hybrid resources only 

The additional constraints that a paired resource faces with respect to its ability to contribute to system 

reliability are the limitation of charging the battery from onsite renewable generation (in the case of 

hybrids), and the size of the inverter or interconnection. As shown in prior assessments of the reliability 

contributions of hybrid resources,20 this constraint is unlikely to bind as long as the minimum generation 

thresholds are satisfied.  As shown in Figure 16, a solar resource in California in a hybrid configuration 

with battery capacity at a 1:1 ratio will be able to charge a 4-hour battery at 95% confidence from its 

renewable energy output21.  The chart illustrates the distribution of daily solar energy available to charge 

the battery. The 5th percentile series represents days with low solar energy and therefore low charging 

potential. When the CAISO daily net load peak is low, it is often cloudy, and solar production is low, so 

there is risk in being able to fully charge 4-hour batteries. However, on high load days, when reliability is 

of concern, the 5th percentile solar output represents more than enough energy to charge a 4-hour 

battery. The trend is different with wind as wind output has a slight negative correlation with summer 

peak loads. In the highest net load days, the wind energy is less dependable and less likely to be able to 

charge a 4-hour battery. As shown in Figure 17, a wind resource in California would be expected to be 

able to charge a 2-hour battery at a 1:1 capacity ratio at 95% confidence from its renewable energy 

output.22 These thresholds are used to set the minimum generation requirement shown in Table 7. For 

hybrids with longer storage durations than 4-hour, E3 and Astrapé recommend that minimum generation 

 
20 https://www.astrape.com/?ddownload=9255 
21 The energy from paired solar exceeds that required to charge a 4-hour battery in at least 95% of all high net load 
days. 
22 The energy from paired wind is approximately equal to that required to charge a 2-hour battery in 95% of all 
high net load days. 
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thresholds scale linearly with increasing storage duration. For example, a 5-hour solar hybrid would 

require 5/4 or 125% minimum generator MW as a percentage of 5-hr storage MW. 

Figure 16. Charging Potential of PGE Bay 1Axis PV and Storage Paired Resource 

 

Figure 17. Charging Potential of PGE Bay Wind and Storage Paired Resource 
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WIND 

Wind output is generally negatively correlated with hot weather and this is generally reflected in ELCC 

values that are materially lower than their annual or seasonal capacity factors (see the Appendix of this 

report for more information about these dynamics). Locational diversity provides some reliability value 

for wind resources although at the existing wind penetrations in California incremental additions within 

the state likely bring limited diversity value. Projects located outside the state or offshore are likely subject 

to different climatological conditions, which provides additional diversity and results in higher ELCCs even 

if their annual capacity factors are similar to those in California.  

Table 8. Wind Incremental ELCCs by MTR Tranche 

  Tranche 1 Tranche 2 Tranche 3 Tranche 4 
 

2023 2024 2025 2026 

Wind CA 13.9% 16.5% 22.6% 21.6% 

Wind WY 28.9% 28.1% 26.7% 31.6% 

Wind NM 31.1% 31.0% 34.5% 34.2% 

Wind Offshore N/A N/A N/A 36.4% 
 

APPROACH FOR OTHER RESOURCES NOT MODELED 

The Commission MTR decision requires the following method for determining incremental capacity value 

for resources not covered in this or next year’s study: 

“For all other resource types, counting will be in accordance with the 
system resource adequacy NQC counting rules at the time the contract 
for the new resource or capacity added to an existing resource is 
executed.” (D.21-06-035, p. 71). 

 

E3 and Astrapé agree that this is a reasonable approach. If new resources have project-specific constraints 

that might impair their ability to meet the NQC counting rules (such as the resource type specific 

“technology factors” published in the CPUC’s NQC List), these resources may require additional analysis 

to determine their capacity value. As an example, a new geothermal resource may have project specific 

characteristics (such as working fluid temperatures, cooling system types, or certain project locations) 

that make them susceptible to temperature based de-rates during the summer net peak conditions. These 

project-specific characteristics may cause a resource to deviate from the RA program NQC counting rules 

and, if so, the CPUC could utilize a process to evaluate that project’s expected performance. For instance, 

if LSEs submitting new resources using the RA NQC counting rules can provide their forecasted output (or 

potential maximum output) during summer net-peak conditions (5-10pm in June through September), 

that output can be compared against the RA technology factors to determine their reasonableness for 

that specific project. Since the Commission has suggested using the September NQC value specifically, this 

assessment could even be limited to the month of September. 
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CONCLUSIONS AND LESSONS LEARNED 

CONCLUSIONS  

Based on the analysis presented in this report, E3 and Astrapé conclude the following: 

• Energy storage resources provide less than 100% incremental ELCC in tranche 1 due to the existing 

CAISO storage penetration (approximately 6 GW of batteries and pumped hydro) and interactions 

with the dispatchable fleet used for charging.  

• Energy storage ELCCs decline with increasing penetration, which can be partially offset with longer 

duration storage additions.  

• Solar ELCCs decline as the system net peak is shifted later into the evening but then increase due 

to their diversity benefit with higher penetrations of energy storage on the system; by 2026, the 

majority of their incremental capacity value is from interactive effects with other resources. 

• In-state wind ELCCs increase as solar and storage additions move reliability need into more 

favorable time periods for in-state wind’s typical output. Out-of-state wind and offshore wind 

show higher ELCCs than in-state wind due to their higher output during net peak conditions. 

RECOMMENDATIONS FOR FURTHER RESEARCH 

• Consider updating incremental ELCCs for tranche 3 (2025) and 4 (2026): while this analysis 

examined a surface of solar and storage additions to calculate incremental ELCCs through tranche 

4 (2026), this analysis could be refreshed for later MTR tranches if more information is available 

that would materially impact the CAISO resource changes between now and 2025-2026. Potential 

differences versus the assumptions made for this analysis include the level of utility solar 

additions, behind-the-meter solar additions, or wind capacity additions. More or less solar will 

have impacts on the incremental storage ELCCs (and vice versa).  A refresh may be warranted 

given the extremely large size of the capacity shortfall being filled. 

• Refresh of forced outage data in SERVM to reflect the latest data on resource performance: 

while updates were made to CCGT and CT forced outage rates, other resources have relatively 

low class average EFOR values that should be validated with the latest NERC GADS data. 

Additionally, forced outage rates for battery storage were not incorporated into this analysis due 

to lack of operational data for CAISO storage resources. Battery storage outage rates should be 

updated as further data becomes available based on their performance in 2020, 2021, and 2022. 

Monitoring other aspects of real-world battery operations, such as their ability to be fully utilized 

within CAISO market operations, can inform whether additional updates are needed in SERVM to 

reflect their performance. 

• Review effects of uncertainty on the reliability contributions of energy limited resources: The 

uncertainty in load, wind, solar, and generator performance leads to uncertainty in the availability 

of energy limited resources. The simulations in this study assumed that net load was known with 

high precision at the time of resource commitment. While operating procedures should mitigate 
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most of the reliability effects of uncertainty, analysis which includes distributions of net load 

uncertainty would be beneficial in validating estimates of energy limited resource reliability value. 
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LIST OF ACRONYMS 
 

AAEE Additional Achievable Energy Efficiency 

AZ APS Arizona Public Service Company 

BANC Balancing Authority of Northern California 

BPA Bonneville Power Administration 

BTM PV Behind the Meter Photovoltaic 

CAISO California Independent System Operator 

CC Combined Cycle 

CFE Comisión Federal de Electricidad 

CPUC California Public Utilities Commission 

CT Combustion Turbine 

DR Demand Response 

EFOR Equivalent Forced Outage Rates 

EIA Energy Information Administration 

ELCC Effective Load Carrying Capability 

ERM Enterprise Risk Management 

EV Electric Vehicle 

GW Gigawatts 

ICE Internal Combustion Engine 

IEPR 

IID 

Integrated Energy Policy Report 

Imperial Irrigation District 

IRP Integrated Resource Plan 

LADWP Los Angeles Department of Water and Power 

LOLE Loss of Load Expectation 

LOLP Loss of Load Probability 

LSEs Load-Serving Entities 

MMT Million Metric Ton 

MTR Mid-Term Reliability 

MW Megawatts 
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NERC GADS 
North American Electric Reliability Corporation Generator 

Availability Data System  

NEVP Nevada Power Company 

NQC Net Qualifying Capacity 

PACW 

PRM 

PacifiCorp West 

Planning Reserve Margin 

PSH Pumped Storage Hydro 

PV Photovoltaic 

RA Resource Adequacy 

RSP Reference System Portfolio 

SERVM Strategic Energy and Risk Valuation Model 

SRP Salt River Project 

TIDC Turlock Irrigation District 

TOU Time-of-Use 

WALC Western Area Power Administration - Lower Colorado Region 

WECC Western Electricity Coordinating Council 

Wind CA California Wind 

Wind NM New Mexico Wind 

Wind WY Wyoming Wind 
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APPENDIX A: UPDATED WIND SHAPE METHODOLOGY 

DOCUMENTATION 

The following has been prepared for the California Public Utilities Commission “CPUC” to document the 

onshore wind profile development efforts made by Astrapé Consulting using a clustered sampling 

method.  

HISTORICAL DATA 

Astrapé began with hourly project level wind data from 2014 to 2020 for 119 different projects provided 

by CPUC staff.  Astrapé assigned each project to one of the four regions to aggregate the data into larger 

profiles. Projects with incomplete or bad data were excluded. The number of projects included and 

excluded from each project are shown in Table A1. Capacities, shown in Table A2, were calculated from 

the hourly net dependable capacity profiles to achieve normalized hourly profiles for each of the seven 

regions.    

Table A1. Project Designations 

Region # of Projects Excluded # of Projects Included Total # of Projects 

PGE Bay 12 17 29 
PGE Valley 1 0 1 

San Gorgonio 7 47 54 
Tehachapi 10 25 35 

Total 30 89 119 

 

Table A2. Project Capacities Assigned by Region 

Region MW Excluded MW Included Total MW 

PGE Bay 89 1389 1,478 
PGE Valley 13 0 13 

San Gorgonio 135 3,696 3,830 
Tehachapi 324 762 1,087 

Total 561 5,847 6,408 

 

Figure A1 - Figure A3 are the summarized normalized shapes by region for the annual, summer, and winter 

periods. Table A3 provides the annual capacity factors for the source data. 
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Figure A1. Annual Wind Shapes by Hour of Day 

 

Figure A2. Summer Wind Shapes by Hour of Day 
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Figure A3. Winter Wind Shapes by Hour of Day 

 

Table A3.  Annual Capacity Factors 

 San Gorgonio Tehachapi PGE Bay 

2014 27.3 26.1 29.8 

2015 24.0 28.6 30.3 

2016 28.3 33.5 29.4 

2017 26.2 33.0 28.5 

2018 27.8 33.5 31.4 

2019 26.3 32.4 29.2 

2020 26.3 32.5 29.8 

Average 26.6 31.4 29.8 

Table A4 shows the capacities by year for each aggregate wind profile.  

Table A4. Installed Wind Capacity (MW) by Year 

Year San Gorgonio Tehachapi PGE Bay 

2014 3,254 106 1,246 

2015 3,432 360 1,332 

2016 3,558 390 1,332 

2017 3,558 390 1,332 

2018 3,686 445 1,378 

2019 3,686 617 1,369 

2020 3,435 746 1,369 



40 
 

Table A5 shows the correlation seen in the historical profiles.  With these regions covering such a large 

geographical area, the correlation is not extremely high.  There is a reasonable amount of correlation for 

the two California profiles that are in close proximity to each other.  For example, San Gorgonio and 

Tehachapi have a 0.92 correlation. Astrapé maintains these correlations across zones in developing the 

final set of zonal shapes.   

Table A5. Correlations Across Profiles 

 San Gorgonio Tehachapi PGE Bay 

San Gorgonio  92% 41% 

Tehachapi   41% 

PGE Bay    

SYNTHETIC WIND PROFILE DEVELOPMENT USING CLUSTERED SAMPLING 

Because CPUC’s analysis is based on a framework analyzing 1998 – 2017 weather years, it is important to 

develop synthetic shapes for these years.  In resource adequacy modeling it is important to include actual 

daily shapes to mimic the distribution of historical wind output.  In Astrapé’s experience, modeled wind 

output data developed using mesoscale models has resulted in shapes that resemble an accurate average 

12 x 24 capacity factor but tend to miss significant volatility or correlations that are seen in actual historical 

data. This is often due to inclusion of too much diversity between individual sites.  For this reason, the 

2014 to 2020 shapes are used to develop shapes for the 1998 to 2014 period based on San Francisco peak 

temperatures using a clustered sampling technique. A plot of historical afternoon wind output as a 

function of daily peak temperature is shown in Figure A4.  
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Figure A4. Historical Wind as a Function of San Francisco Daily Peak Temperature 

 

The average historical wind output as a function of San Francisco temperatures is provided in Figure A5. 

The correlations across California wind sites are visually apparent. 

Figure A5. Average Historical Wind Output as a Function of San Francisco Temperature 
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Given the relationship of wind output to temperatures, historical data is clustered based on daily max 

temperatures and month of the year. Daily wind output is chosen based on the sum of the top 4 maximum 

hourly San Francisco temperatures for each day. The matching day is restricted to choose within the same 

month of the source data.  For example, January 10, 1998 will use the closest matching temperature 

profile within the January time frame of the 2014 and 2020 historical wind data. Because the matching 

method for the existing profiles held the correlations constant by using the same seed day for all profiles, 

additional work was not needed to ensure correlations. A final resampling, which involved switching daily 

profiles, was done to match the load and wind output relationship present in the historical profiles.  The 

wind output in the synthetic profiles on days with peak loads > 40GW was compared to the trend of wind 

output in historical data as a function of peak load. If the synthetic profile was higher than trend, its profile 

(for all synthetic wind sites to maintain correlations) was swapped with the profile from another day with 

lower wind output and with lower load. The resampling was performed to conform California wind with 

the trend in Figure A6. 

Figure A6. California Afternoon Wind Output Trend as a Function of Daily Peak Load 

 

The correlations for the 1998-2017 shapes are provided in Table A6. To smooth the transition between 

days (since days selected were not consecutive), the modeled output in hours 23 to 2 was averaged (hour 

23 was the average of the profile in hour 22, 23, and 24; hour 24 was the average of hours 23, 24, and 1, 

etc.). The average final summer wind shapes are shown in Figure A7. 
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Table A6. Correlations Across Synthetic Profiles for 1998 to 2017 

 San Gorgonio Tehachapi PGE Bay 

San Gorgonio  89% 40% 

Tehachapi   40% 

PGE Bay    

 

Figure A7. Average Summer Wind Shapes for 1998 to 2017 Synthetic Wind Profiles 

 

 

 

 

 

 

 

 

Table A7 provides the annual capacity factors for the synthetic wind profiles.  
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Table A7. Annual Capacity Factors for Synthetic Wind Profiles 

Year San Gorgonio Tehachapi PGE Bay 

1998 29.9 34.9 31.6 

1999 28.5 33.9 30.8 

2000 28.6 33.8 34.0 

2001 26.6 31.2 30.3 

2002 27.9 32.7 32.1 

2003 28.2 33.4 30.7 

2004 26.4 31.5 31.0 

2005 28.4 33.4 30.9 

2006 27.4 31.6 29.9 

2007 27.0 32.0 31.7 

2008 26.9 32.3 30.5 

2009 27.9 32.9 28.8 

2010 28.0 33.0 33.4 

2011 28.1 33.2 32.4 

2012 28.6 34.4 34.2 

2013 28.3 33.0 30.2 

2014 27.3 26.2 29.8 

2015 24.0 28.6 30.3 

2016 28.3 33.5 29.4 

2017 26.2 33.0 28.5 

Average 27.6 32.4 31.0 

 

The profiles used to calculate Wind ELCCs for projects outside California were developed by CPUC Staff 

based on the MERRA-2 dataset.23 A comparison of average annual daily profiles and average daily profiles 

during the top 20 highest net load days between California land-based wind, Wyoming wind, and New 

Mexico wind is provided in Figure A8 and Figure A9. 

 

 
23 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
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Figure A8. Average Annual Wind Shape Comparison 

 

Figure A9. Average Wind Shape Comparison During Top 20 Net Load Days 
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APPENDIX B: ELCC COMPARISON 

This Appendix compares the incremental ELCC results of this study (2021 CPUC study) to Astrapé’s 2021 

Marginal ELCC study for the IOUs and the ELCC assumptions in the 2021 Preferred System Plan version of 

RESOLVE. 

ENERGY STORAGE ELCCS 

The graph below shows a comparison of incremental 4-hour battery storage ELCCs across the three 

studies. They are generally well aligned at 90-100% ELCC for the first 10% of peak, followed by a decline 

after that penetration, converging around 60% incremental ELCC by 30% of peak penetration. The 

differences between results are caused by this study using higher forced outage rates than the 2021 IOU 

study but lower forced outage rates than the 2019 Astrapé study that generated the inputs into RESOLVE’s 

energy storage ELCC curve. This study also used the perfect capacity replacement ELCC calculation 

method, whereas the 2021 IOU study used the perfect flat block of load ELCC calculation method, which 

resulted in lower initial storage ELCCs in that study. There are also other differences in the study years, 

loads, and resource portfolios modeled. 

Figure B1. 4-hr Energy Storage ELCC Comparison 

 

SOLAR ELCCS 

Solar ELCCs are well aligned between the two studies using SERVM (the 2021 CPUC study and the 2021 

Astrapé IOU study). Incremental/marginal ELCCs remain between ~6-8% in the 2023-2026 timeframe, 

driven in part by interactive effects captured in SERVM. RESOLVE shows lower marginal ELCCs for solar. 

This is driven by the fact that RESOLVE captures the solar/storage diversity benefits within its storage 
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ELCCs, not the solar ELCC values on its ELCC surface. There are also differences in the underlying dataset 

of load and solar output between the latest SERVM vintage and the older data vintage used in E3’s RECAP 

model for RESOLVE’s ELCC surface. For the next IRP cycle, E3 and Astrapé recommend updating the 

RESOLVE ELCC surface to reflect the latest IRP dataset and further studying methods to capture solar and 

storage ELCC interactions within RESOLVE. 

Figure B2. Solar ELCC Comparison 

 

WIND ELCCS 

Wind ELCCs for California on-shore wind projects are well aligned between the two studies using SERVM 

(the 2021 CPUC study and the 2021 Astrapé IOU study), at least in the near-term where they remain 

around 15%. Thereafter they diverge slightly, with the CPUC study increasing and the IOU study slightly 

decreasing. The 2021 CPUC study design did not model further saturation of in-state wind but did model 

diversity benefits from high solar + storage additions. The higher solar additions modeled provide a 

diversity benefit to new wind. RESOLVE marginal ELCCs include diversity benefit of solar only and no 

interactive effects with energy storage as well as using older and different wind shapes vs. those 

developed for the 2021 CPUC ELCC study. E3 and Astrapé recommend updating the RESOLVE ELCC inputs 

for wind to update underlying data to align with the latest IRP dataset. 
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Figure B3. Wind ELCC Comparison 

 

Regarding out-of-state wind, the 2021 Astrapé IOU study included New Mexico wind at a much lower ELCC 

than modeled in the latest 2021 CPUC study. This difference is driven by the use of older CPUC wind 

shapes (with a time shift added) in the IOU study versus the wind shapes newly constructed by CPUC Staff. 

Table B1. Out-of-state Wind ELCC Comparison 

Wyoming Wind (2026) New Mexico Wind (2026) 

2021 CPUC Study 2021 Astrapé IOU Study 2021 CPUC Study 2021 Astrapé IOU Study 

31.6% N/A 34.2% 8.6% 

 

 


